Graph embedding in vector spaces by node attribute statistics
نویسندگان
چکیده
Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graph embedding into vector spaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous node attributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.
منابع مشابه
On the Correlation of Graph Edit Distance and L 1 Distance in the Attribute Statistics Embedding Space
Graph embeddings in vector spaces aim at assigning a pattern vector to every graph so that the problems of graph classification and clustering can be solved by using data processing algorithms originally developed for statistical feature vectors. An important requirement graph features should fulfil is that they reproduce as much as possible the properties among objects in the graph domain. In ...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملA Fuzzy-Interval Based Approach for Explicit Graph Embedding
We present a new method for explicit graph embedding. Our algorithm extracts a feature vector for an undirected attributed graph. The proposed feature vector encodes details about the number of nodes, number of edges, node degrees, the attributes of nodes and the attributes of edges in the graph. The first two features are for the number of nodes and the number of edges. These are followed by w...
متن کاملGraph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012